
27
DEDUCTIVE DATABASES

For ‘Is’ and ‘Is-Not’ though with Rule and Line,

And ‘Up-and-Down’ by Logic I define,

Of all that one should care to fathom, I

Was never deep in anything but—Wine.

—Rubaiyat of Omar Khayyam, Translated by Edward Fitzgerald

Relational database management systems have been enormously successful for admin-

istrative data processing. In recent years, however, as people have tried to use database

systems in increasingly complex applications, some important limitations of these sys-

tems have been exposed. For some applications, the query language and constraint

definition capabilities have been found to be inadequate. As an example, some com-

panies maintain a huge parts inventory database and frequently want to ask questions

such as, “Are we running low on any parts needed to build a ZX600 sports car?” or,

“What is the total component and assembly cost to build a ZX600 at today’s part

prices?” These queries cannot be expressed in SQL-92.

We begin this chapter by discussing queries that cannot be expressed in relational

algebra or SQL and present a more powerful relational language called Datalog. Queries

and views in SQL can be understood as if–then rules: “If some tuples exist in tables

mentioned in the FROM clause that satisfy the conditions listed in the WHERE clause,

then the tuple described in the SELECT clause is included in the answer.” Datalog

definitions retain this if–then reading, with the significant new feature that definitions

can be recursive, that is, a table can be defined in terms of itself.

Evaluating Datalog queries poses some additional challenges, beyond those encountered

in evaluating relational algebra queries, and we discuss some important implementation

and optimization techniques that were developed to address these challenges. Inter-

estingly, some of these techniques have been found to improve performance of even

nonrecursive SQL queries and have therefore been implemented in several current re-

lational DBMS products. Some systems, notably IBM’s DB2 DBMS, support recursive

queries and the SQL:1999 standard, the successor to the SQL-92 standard, requires

support for recursive queries.

We concentrate on the main ideas behind recursive queries and briefly cover the

SQL:1999 features that support these ideas. In Section 27.1, we introduce recursive

799

800 Chapter 27

Recursion in SQL: The concepts discussed in this chapter are not included in the

SQL-92 standard. However, the revised version of the SQL standard, SQL:1999,

includes support for recursive queries and IBM’s DB2 system already supports

recursive queries as required in SQL:1999.

queries and Datalog notation through an example. We present the theoretical foun-

dations for recursive queries, namely least fixpoints and least models, in Section 27.2.

We discuss queries that involve the use of negation or set-difference in Section 27.3.

Finally, we consider techniques for evaluating recursive queries efficiently in Section

27.4.

27.1 INTRODUCTION TO RECURSIVE QUERIES

We begin with a simple example that illustrates the limits of SQL-92 queries and

the power of recursive definitions. Let Assembly be a relation with three fields part,

subpart, and qty. An example instance of Assembly is shown in Figure 27.1. Each

tuple in Assembly indicates how many copies of a particular subpart are contained in

a given part. The first tuple indicates, for example, that a trike contains three wheels.

The Assembly relation can be visualized as a tree, as shown in Figure 27.2. A tuple is

shown as an edge going from the part to the subpart, with the qty value as the edge

label.

part subpart qty

trike wheel 3

trike frame 1

frame seat 1

frame pedal 1

wheel spoke 2

wheel tire 1

tire rim 1

tire tube 1

Figure 27.1 An Instance of Assembly

rim tube

seat pedal

frame

 trike

wheel

spoke tire

3 1

2 1 1 1

11

Figure 27.2 Assembly Instance Seen as a Tree

A natural question to ask is, “What are the components of a trike?” Rather surpris-

ingly, this query is impossible to write in SQL-92. Of course, if we look at a given

instance of the Assembly relation, we can write a ‘query’ that takes the union of the

parts that are used in a trike. But such a query is not interesting—we want a query

that identifies all components of a trike for any instance of Assembly, and such a query

cannot be written in relational algebra or in SQL-92. Intuitively, the problem is that

we are forced to join the Assembly relation with itself in order to recognize that trike

Deductive Databases 801

contains spoke and tire, that is, to go one level down the Assembly tree. For each

additional level, we need an additional join; two joins are needed to recognize that

trike contains rim, which is a subpart of tire. Thus, the number of joins needed to

identify all subparts of trike depends on the height of the Assembly tree, that is, on

the given instance of the Assembly relation. There is no relational algebra query that

works for all instances; given any query, we can construct an instance whose height is

greater than the number of joins in the query.

27.1.1 Datalog

We now define a relation called Components that identifies the components of every

part. Consider the following program, or collection of rules:

Components(Part, Subpart) :- Assembly(Part, Subpart, Qty).

Components(Part, Subpart) :- Assembly(Part, Part2, Qty),

Components(Part2, Subpart).

These are rules in Datalog, a relational query language inspired by Prolog, the well-

known logic programming language; indeed, the notation follows Prolog. The first rule

should be read as follows:

For all values of Part, Subpart, and Qty,

if there is a tuple 〈Part, Subpart, Qty〉 in Assembly,

then there must be a tuple 〈Part, Subpart〉 in Components.

The second rule should be read as follows:

For all values of Part, Part2, Subpart, and Qty,

if there is a tuple 〈Part, Part2, Qty〉 in Assembly and

a tuple 〈Part2, Subpart〉 in Components,

then there must be a tuple 〈Part, Subpart〉 in Components.

The part to the right of the :- symbol is called the body of the rule, and the part to

the left is called the head of the rule. The symbol :- denotes logical implication; if

the tuples mentioned in the body exist in the database, it is implied that the tuple

mentioned in the head of the rule must also be in the database. (Note that the

body could be empty; in this case, the tuple mentioned in the head of the rule must be

included in the database.) Therefore, if we are given a set of Assembly and Components

tuples, each rule can be used to infer, or deduce, some new tuples that belong in

Components. This is why database systems that support Datalog rules are often called

deductive database systems.

Each rule is really a template for making inferences: by assigning constants to the

variables that appear in a rule, we can infer specific Components tuples. For example,

802 Chapter 27

by setting Part=trike, Subpart=wheel, and Qty=3, we can infer that 〈trike, wheel〉 is

in Components. By considering each tuple in Assembly in turn, the first rule allows

us to infer that the set of tuples obtained by taking the projection of Assembly onto

its first two fields is in Components.

The second rule then allows us to combine previously discovered Components tuples

with Assembly tuples to infer new Components tuples. We can apply the second rule by

considering the cross-product of Assembly and (the current instance of) Components

and assigning values to the variables in the rule for each row of the cross-product, one

row at a time. Observe how the repeated use of the variable Part2 prevents certain

rows of the cross-product from contributing any new tuples; in effect, it specifies an

equality join condition on Assembly and Components. The tuples obtained by one

application of this rule are shown in Figure 27.3. (In addition, Components contains

the tuples obtained by applying the first rule; these are not shown.)

part subpart

trike spoke

trike tire

trike seat

trike pedal

wheel rim

wheel tube

Figure 27.3 Components Tuples Obtained
by Applying the Second Rule Once

part subpart

trike spoke

trike tire

trike seat

trike pedal

wheel rim

wheel tube

trike rim

trike tube

Figure 27.4 Components Tuples Obtained by
Applying the Second Rule Twice

The tuples obtained by a second application of this rule are shown in Figure 27.4. Note

that each tuple shown in Figure 27.3 is reinferred. Only the last two tuples are new.

Applying the second rule a third time does not generate any additional tuples. The set

of Components tuples shown in Figure 27.4 includes all the tuples that can be inferred

using the two Datalog rules defining Components and the given instance of Assembly.

The components of a trike can now be obtained by selecting all Components tuples

with the value trike in the first field.

Each application of a Datalog rule can be understood in terms of relational algebra.

The first rule in our example program simply applies projection to the Assembly rela-

tion and adds the resulting tuples to the Components relation, which is initially empty.

The second rule joins Assembly with Components and then does a projection. The

result of each rule application is combined with the existing set of Components tuples

using union.

Deductive Databases 803

The only Datalog operation that goes beyond relational algebra is the repeated ap-

plication of the rules defining Components until no new tuples are generated. This

repeated application of a set of rules is called the fixpoint operation, and we develop

this idea further in the next section.

We conclude this section by rewriting the Datalog definition of Components in terms

of extended SQL, using the syntax proposed in the SQL:1999 draft and currently

supported in IBM’s DB2 Version 2 DBMS:

WITH RECURSIVE Components(Part, Subpart) AS

(SELECTA1.Part, A1.Subpart FROM Assembly A1)

UNION

(SELECTA2.Part, C1.Subpart

FROM Assembly A2, Components C1

WHERE A2.Subpart = C1.Part)

SELECT * FROM Components C2

The WITH clause introduces a relation that is part of a query definition; this relation

is similar to a view, but the scope of a relation introduced using WITH is local to

the query definition. The RECURSIVE keyword signals that the table (in our example,

Components) is recursively defined. The structure of the definition closely parallels

the Datalog rules. Incidentally, if we wanted to find the components of a particular

part, for example, trike, we can simply replace the last line with the following:

SELECT * FROM Components C2

WHERE C2.Part = ‘trike’

27.2 THEORETICAL FOUNDATIONS

We classify the relations in a Datalog program as either output relations or input

relations. Output relations are defined by rules (e.g., Components), and input

relations have a set of tuples explicitly listed (e.g., Assembly). Given instances of the

input relations, we must compute instances for the output relations. The meaning of

a Datalog program is usually defined in two different ways, both of which essentially

describe the relation instances for the output relations. Technically, a query is a

selection over one of the output relations (e.g., all Components tuples C with C.part

= trike). However, the meaning of a query is clear once we understand how relation

instances are associated with the output relations in a Datalog program.

The first approach to defining what a Datalog program means is called the least model

semantics and gives users a way to understand the program without thinking about how

the program is to be executed. That is, the semantics is declarative, like the semantics

804 Chapter 27

of relational calculus, and not operational like relational algebra semantics. This is

important because the presence of recursive rules makes it difficult to understand a

program in terms of an evaluation strategy.

The second approach, called the least fixpoint semantics, gives a conceptual evaluation

strategy to compute the desired relation instances. This serves as the basis for recursive

query evaluation in a DBMS. More efficient evaluation strategies are used in an actual

implementation, but their correctness is shown by demonstrating their equivalence to

the least fixpoint approach. The fixpoint semantics is thus operational and plays a role

analogous to that of relational algebra semantics for nonrecursive queries.

27.2.1 Least Model Semantics

We want users to be able to understand a Datalog program by understanding each

rule independently of other rules, with the meaning: If the body is true, the head is

also true. This intuitive reading of a rule suggests that given certain relation instances

for the relation names that appear in the body of a rule, the relation instance for the

relation mentioned in the head of the rule must contain a certain set of tuples. If a

relation name R appears in the heads of several rules, the relation instance for R must

satisfy the intuitive reading of all these rules. However, we do not want tuples to be

included in the instance for R unless they are necessary to satisfy one of the rules

defining R. That is, we only want to compute tuples for R that are supported by some

rule for R.

To make these ideas precise, we need to introduce the concepts of models and least

models. A model is a collection of relation instances, one instance for each relation

in the program, that satisfies the following condition. For every rule in the program,

whenever we replace each variable in the rule by a corresponding constant, the following

holds:

If every tuple in the body (obtained by our replacement of variables with

constants) is in the corresponding relation instance,

Then the tuple generated for the head (by the assignment of constants to

variables that appear in the head) is also in the corresponding relation in-

stance.

Observe that the instances for the input relations are given, and the definition of a

model essentially restricts the instances for the output relations.

Consider the rule:

Components(Part, Subpart) :- Assembly(Part, Part2, Qty),

Deductive Databases 805

Components(Part2, Subpart).

Suppose that we replace the variable Part by the constant wheel, Part2 by tire, Qty

by 1, and Subpart by rim:

Components(wheel, rim) :- Assembly(wheel, tire, 1),

Components(tire, rim).

Let A be an instance of Assembly and C be an instance of Components. If A contains

the tuple 〈wheel, tire, 1〉 and C contains the tuple 〈tire, rim〉, then C must also contain

the tuple 〈wheel, rim〉 in order for the pair of instances A and C to be a model. Of

course, the instances A and C must satisfy the inclusion requirement illustrated above

for every assignment of constants to the variables in the rule: If the tuples in the rule

body are in A and C, the tuple in the head must be in C.

As an example, the instance of Assembly shown in Figure 27.1 and the instance of

Components shown in Figure 27.4 together form a model for the Components program.

Given the instance of Assembly shown in Figure 27.1, there is no justification for

including the tuple 〈spoke, pedal〉 to the Components instance. Indeed, if we add

this tuple to the components instance in Figure 27.4, we no longer have a model

for our program, as the following instance of the recursive rule demonstrates, since

〈wheel, pedal〉 is not in the Components instance:

Components(wheel, pedal) :- Assembly(wheel, spoke, 2),

Components(spoke, pedal).

However, by also adding the tuple 〈wheel, pedal〉 to the Components instance, we

obtain another model of the Components program! Intuitively, this is unsatisfactory

since there is no justification for adding the tuple 〈spoke, pedal〉 in the first place, given

the tuples in the Assembly instance and the rules in the program.

We address this problem by using the concept of a least model. A least model of a

program is a model M such that for every other model M2 of the same program, for

each relation R in the program, the instance for R in M is contained in the instance of

R in M2. The model formed by the instances of Assembly and Components shown in

Figures 27.1 and 27.4 is the least model for the Components program with the given

Assembly instance.

27.2.2 Safe Datalog Programs

Consider the following program:

Complex Parts(Part) :- Assembly(Part, Subpart, Qty), Qty > 2.

806 Chapter 27

According to this rule, complex part is defined to be any part that has more than two

copies of any one subpart. For each part mentioned in the Assembly relation, we can

easily check if it is a complex part. In contrast, consider the following program:

Price Parts(Part,Price) :- Assembly(Part, Subpart, Qty), Qty > 2.

This variation seeks to associate a price with each complex part. However, the variable

Price does not appear in the body of the rule. This means that an infinite number of

tuples must be included in any model of this program! To see this, suppose that we

replace the variable Part by the constant trike, SubPart by wheel, and Qty by 3. This

gives us a version of the rule with the only remaining variable being Price:

Price Parts(trike,Price) :- Assembly(trike, wheel, 3), 3 > 2.

Now, any assignment of a constant to Price gives us a tuple to be included in the

output relation Price Parts. For example, replacing Price by 100 gives us the tuple

Price Parts(trike,100). If the least model of a program is not finite, for even one

instance of its input relations, then we say the program is unsafe.

Database systems disallow unsafe programs by requiring that every variable in the

head of a rule must also appear in the body. Such programs are said to be range-

restricted, and every range-restricted Datalog program has a finite least model if the

input relation instances are finite. In the rest of this chapter, we will assume that

programs are range-restricted.

27.2.3 The Fixpoint Operator

A fixpoint of a function f is a value v such that the function applied to the value

returns the same value, that is, f(v) = v. Consider a function that is applied to a

set of values and also returns a set of values. For example, we can define double to

be a function that multiplies every element of the input set by two, and double+ to

be double ∪ identity. Thus, double({1,2,5}) = {2,4,10}, and double+({1,2,5}) =

{1,2,4,5,10}. The set of all even integers—which happens to be an infinite set!—is a

fixpoint of the function double+. Another fixpoint of the function double+ is the set of

all integers. The first fixpoint (the set of all even integers) is smaller than the second

fixpoint (the set of all integers) because it is contained in the latter.

The least fixpoint of a function is a fixpoint that is smaller than every other fixpoint

of that function. In general it is not guaranteed that a function has a least fixpoint.

Deductive Databases 807

For example, there may be two fixpoints, neither of which is smaller than the other.

(Does double have a least fixpoint? What is it?)

Now let us turn to functions over sets of tuples, in particular, functions defined using

relational algebra expressions. The Components relation can be defined by an equation

of the form:

Components = π1,5(Assembly ⊲⊳2=1 Components) ∪ π1,2(Assembly)

This equation has the form

Components = f(Components, Assembly)

where the function f is defined using a relational algebra expression. For a given

instance of the input relation Assembly, this can be simplified to:

Components = f(Components)

The least fixpoint of f is an instance of Components that satisfies the above equation.

Clearly the projection of the first two fields of the tuples in the given instance of the

input relation Assembly must be included in the (instance that is the) least fixpoint of

Components. In addition, any tuple obtained by joining Components with Assembly

and projecting the appropriate fields must also be in Components.

A little thought shows that the instance of Components that is the least fixpoint of f

can be computed using repeated applications of the Datalog rules shown in the previous

section. Indeed, applying the two Datalog rules is identical to evaluating the relational

expression used in defining Components. If an application generates Components

tuples that are not in the current instance of the Components relation, the current

instance cannot be the fixpoint. Therefore, we add the new tuples to Components and

evaluate the relational expression (equivalently, the two Datalog rules) again. This

process is repeated until every tuple generated is already in the current instance of

Components; at this point, we have reached a fixpoint. If Components is initialized

to the empty set of tuples, intuitively we infer only tuples that are necessary by the

definition of a fixpoint, and the fixpoint computed is the least fixpoint.

27.2.4 Least Model = Least Fixpoint

Does a Datalog program always have a least model? Or is it possible that there are

two models, neither of which is contained in the other? Similarly, does every Datalog

program have a least fixpoint? What is the relationship between the least model and

the least fixpoint of a Datalog program?

As we noted earlier in this section, not every function has a least fixpoint. Fortunately,

every function defined in terms of relational algebra expressions that do not contain set-

difference is guaranteed to have a least fixpoint, and the least fixpoint can be computed

808 Chapter 27

by repeatedly evaluating the function. This tells us that every Datalog program has a

least fixpoint, and that the least fixpoint can be computed by repeatedly applying the

rules of the program on the given instances of the input relations.

Further, every Datalog program is guaranteed to have a least model, and the least

model is equal to the least fixpoint of the program! These results (whose proofs we

will not discuss) provide the basis for Datalog query processing. Users can understand

a program in terms of ‘If the body is true, the head is also true,’ thanks to the least

model semantics. The DBMS can compute the answer by repeatedly applying the

program rules, thanks to the least fixpoint semantics and the fact that the least model

and the least fixpoint are identical.

Unfortunately, once set-difference is allowed in the body of a rule, there may no longer

be a least model or a least fixpoint. We consider this point further in the next section.

27.3 RECURSIVE QUERIES WITH NEGATION

Consider the following rules:

Big(Part) :- Assembly(Part, Subpart, Qty), Qty > 2,

not Small(Part).

Small(Part) :- Assembly(Part, Subpart, Qty), not Big(Part).

These two rules can be thought of as an attempt to divide parts (those that are

mentioned in the first column of the Assembly table) into two classes, Big and Small.

The first rule defines Big to be the set of parts that use at least three copies of some

subpart and that are not classified as small parts. The second rule defines Small as

the set of parts that are not classified as big parts.

If we apply these rules to the instance of Assembly shown in Figure 27.1, trike is the

only part that uses at least three copies of some subpart. Should the tuple 〈trike〉 be

in Big or Small? If we apply the first rule and then the second rule, this tuple is in Big.

To apply the first rule, we consider the tuples in Assembly, choose those with Qty >

2 (which is just 〈trike〉), discard those that are in the current instance of Small (both

Big and Small are initially empty), and add the tuples that are left to Big. Therefore,

an application of the first rule adds 〈trike〉 to Big. Proceeding similarly, we can see

that if the second rule is applied before the first, 〈trike〉 is added to Small instead of

Big!

This program has two fixpoints, neither of which is smaller than the other, as shown

in Figure 27.5. The first fixpoint has a Big tuple that does not appear in the second

fixpoint; therefore, it is not smaller than the second fixpoint. The second fixpoint has

a Small tuple that does not appear in the first fixpoint; therefore, it is not smaller than

Deductive Databases 809

the first fixpoint. The order in which we apply the rules determines which fixpoint

is computed, and this situation is very unsatisfactory. We want users to be able to

understand their queries without thinking about exactly how the evaluation proceeds.

frame

wheel

tire

trike

Small

Fixpoint 2

Big

tire

wheel

frame

Small

Fixpoint 1

trikeBig

Figure 27.5 Two Fixpoints for the Big/Small Program

The root of the problem is the use of not. When we apply the first rule, some inferences

are disallowed because of the presence of tuples in Small. Parts that satisfy the other

conditions in the body of the rule are candidates for addition to Big, and we remove

the parts in Small from this set of candidates. Thus, some inferences that are possible

if Small is empty (as it is before the second rule is applied) are disallowed if Small

contains tuples (generated by applying the second rule before the first rule). Here

is the difficulty: If not is used, the addition of tuples to a relation can disallow the

inference of other tuples. Without not, this situation can never arise; the addition of

tuples to a relation can never disallow the inference of other tuples.

27.3.1 Range-Restriction and Negation

If rules are allowed to contain not in the body, the definition of range-restriction

must be extended in order to ensure that all range-restricted programs are safe. If

a relation appears in the body of a rule preceded by not, we call this a negated

occurrence. Relation occurrences in the body that are not negated are called positive

occurrences. A program is range-restricted if every variable in the head of the rule

appears in some positive relation occurrence in the body.

27.3.2 Stratification

A widely used solution to the problem caused by negation, or the use of not, is to

impose certain syntactic restrictions on programs. These restrictions can be easily

checked, and programs that satisfy them have a natural meaning.

810 Chapter 27

We say that a table T depends on a table S if some rule with T in the head contains

S, or (recursively) contains a predicate that depends on S, in the body. A recursively

defined predicate always depends on itself. For example, Big depends on Small (and

on itself). Indeed, the tables Big and Small are mutually recursive, that is, the

definition of Big depends on Small and vice versa. We say that a table T depends

negatively on a table S if some rule with T in the head contains not S, or (recursively)

contains a predicate that depends negatively on S, in the body.

Suppose that we classify the tables in a program into strata or layers as follows. The

tables that do not depend on any other tables are in stratum 0. In our Big/Small

example, Assembly is the only table in stratum 0. Next, we identify tables in stratum

1; these are tables that depend only on tables in stratum 0 or stratum 1 and depend

negatively only on tables in stratum 0. Higher strata are similarly defined: The tables

in stratum i are those that do not appear in lower strata, depend only on tables in

stratum i or lower strata, and depend negatively only on tables in lower strata. A

stratified program is a program whose tables can be classified into strata according

to the above algorithm.

The Big/Small program is not stratified. Since Big and Small depend on each other,

they must be in the same stratum. However, they depend negatively on each other,

violating the requirement that a table can depend negatively only on tables in lower

strata. Consider the following variant of the Big/Small program, in which the first

rule has been modified:

Big2(Part) :- Assembly(Part, Subpart, Qty), Qty > 2.

Small2(Part) :- Assembly(Part, Subpart, Qty), not Big2(Part).

This program is stratified. Small2 depends on Big2 but Big2 does not depend on

Small2. Assembly is in stratum 0, Big is in stratum 1, and Small2 is in stratum 2.

A stratified program is evaluated stratum-by-stratum, starting with stratum 0. To

evaluate a stratum, we compute the fixpoint of all rules defining tables that belong to

this stratum. When evaluating a stratum, any occurrence of not involves a table from

a lower stratum, which has therefore been completely evaluated by now. The tuples in

the negated table will still disallow some inferences, but the effect is completely deter-

ministic, given the stratum-by-stratum evaluation. In the example, Big2 is computed

before Small2 because it is in a lower stratum than Small2; 〈trike〉 is added to Big2.

Next, when we compute Small2, we recognize that 〈trike〉 is not in Small2 because it

is already in Big2.

Incidentally, observe that the stratified Big/Small program is not even recursive! If we

replaced Assembly by Components, we would obtain a recursive, stratified program:

Assembly would be in stratum 0, Components would be in stratum 1, Big2 would also

be in stratum 1, and Small2 would be in stratum 2.

Deductive Databases 811

Intuition behind Stratification

Consider the stratified version of the Big/Small program. The rule defining Big2 forces

us to add 〈trike〉 to Big2, and it is natural to assume that 〈trike〉 is the only tuple

in Big2, because we have no supporting evidence for any other tuple being in Big2.

The minimal fixpoint computed by stratified fixpoint evaluation is consistent with this

intuition. However, there is another minimal fixpoint: We can place every part in

Big2 and make Small2 be empty. While this assignment of tuples to relations seems

unintuitive, it is nonetheless a minimal fixpoint!

The requirement that programs be stratified gives us a natural order for evaluating

rules. When the rules are evaluated in this order, the result is a unique fixpoint that is

one of the minimal fixpoints of the program. The fixpoint computed by the stratified

fixpoint evaluation usually corresponds well to our intuitive reading of a stratified

program, even if the program has more than one minimal fixpoint.

For nonstratified Datalog programs, it is harder to identify a natural model from

among the alternative minimal models, especially when we consider that the meaning

of a program must be clear even to users who do not have expertise in mathematical

logic. Although there has been considerable research on identifying natural models

for nonstratified programs, practical implementations of Datalog have concentrated on

stratified programs.

Relational Algebra and Stratified Datalog

Every relational algebra query can be written as a range-restricted, stratified Datalog

program. (Of course, not all Datalog programs can be expressed in relational algebra;

for example, the Components program.) We sketch the translation from algebra to

stratified Datalog by writing a Datalog program for each of the basic algebra opera-

tions, in terms of two example tables R and S, each with two fields:

Selection: Result(Y) :- R(X,Y), X=c.

Projection: Result(Y) :- R(X,Y).

Cross-product: Result(X,Y,U,V) :- R(X,Y), S(U,V).

Set-difference: Result(X,Y) :- R(X,Y), not S(U,V).

Union: Result(X,Y) :- R(X,Y).

Result(X,Y) :- S(X,Y).

We conclude our discussion of stratification by noting that the SQL:1999 draft re-

quires programs to be stratified. The stratified Big/Small program is shown below in

SQL:1999 notation, with a final additional selection on Big2:

WITH

812 Chapter 27

Big2(Part) AS

(SELECT A1.Part FROM Assembly A1 WHERE Qty > 2)

Small2(Part) AS

((SELECT A2.Part FROM Assembly A2)

EXCEPT

(SELECT B1.Part from Big2 B1))

SELECT * FROM Big2 B2

27.3.3 Aggregate Operations

Datalog can be extended with SQL-style grouping and aggregation operations. Con-

sider the following program:

NumParts(Part, SUM(〈Qty〉)) :- Assembly(Part, Subpart, Qty).

This program is equivalent to the SQL query:

SELECT A.Part, SUM (A.Qty)

FROM Assembly A

GROUP BY A.Part

The angular brackets 〈. . .〉 notation was introduced in the LDL deductive system,

one of the pioneering deductive database prototypes developed at MCC in the late

1980s. We use it to denote multiset generation, or the creation of multiset-values.

In principle, the rule defining NumParts is evaluated by first creating the temporary

relation shown in Figure 27.6. We create the temporary relation by sorting on the

part attribute (which appears in the left side of the rule, along with the 〈. . .〉 term)

and collecting the multiset of qty values for each part value. We then apply the SUM

aggregate to each multiset-value in the second column to obtain the answer, which is

shown in Figure 27.7.

part 〈qty〉

trike {3,1}

frame {1,1}

wheel {2,1}

tire {1,1}

Figure 27.6 Temporary Relation

part SUM(〈qty〉)

trike 4

frame 2

wheel 3

tire 2

Figure 27.7 The Tuples in NumParts

The temporary relation shown in Figure 27.6 need not be materialized in order to com-

pute NumParts—for example, SUM can be applied on-the-fly, or Assembly can simply

Deductive Databases 813

be sorted and aggregated as described in Section 12.7. However, we observe that sev-

eral deductive database systems (e.g., LDL, Coral) in fact allowed the materialization

of this temporary relation; the following program would do so:

TempReln(Part,〈Qty〉) :- Assembly(Part, Subpart, Qty).

The tuples in this relation are not in first-normal form, and there is no way to create

this relation using SQL-92.

The use of aggregate operations leads to problems similar to those caused by not, and

the idea of stratification can be applied to programs with aggregate operations as well.

Consider the following program:

NumComps(Part, COUNT(〈Subpart〉)) :- Components(Part, Subpart).

Components(Part, Subpart) :- Assembly(Part, Subpart, Qty).

Components(Part, Subpart) :- Assembly(Part, Part2, Qty),

Components(Part2, Subpart).

The idea is to count the number of subparts for each part; by aggregating over Com-

ponents rather than Assembly, we can count subparts at any level in the hierarchy

instead of just immediate subparts. The important point to note in this example is

that we must wait until Components has been completely evaluated before we apply

the NumComps rule. Otherwise, we obtain incomplete counts. This situation is anal-

ogous to the problem we faced with negation; we have to evaluate the negated relation

completely before applying a rule that involves the use of not. If a program is strati-

fied with respect to uses of 〈. . .〉 as well as not, stratified fixpoint evaluation gives us

meaningful results.

27.4 EFFICIENT EVALUATION OF RECURSIVE QUERIES

The evaluation of recursive queries has been widely studied. While all the problems of

evaluating nonrecursive queries continue to be present, the newly introduced fixpoint

operation creates additional difficulties. A straightforward approach to evaluating re-

cursive queries is to compute the fixpoint by repeatedly applying the rules as illustrated

in Section 27.1.1. One application of all the program rules is called an iteration; we

perform as many iterations as necessary to reach the least fixpoint. This approach has

two main disadvantages:

Repeated inferences: As Figures 27.3 and 27.4 illustrate, inferences are re-

peated across iterations. That is, the same tuple is inferred repeatedly in the

same way, that is, using the same rule and the same tuples for tables in the body

of the rule.

814 Chapter 27

Unnecessary inferences: Suppose that we only want to find the components

of a wheel. Computing the entire Components table is wasteful and does not take

advantage of information in the query.

In this section we discuss how each of these difficulties can be overcome. We will

consider only Datalog programs without negation.

27.4.1 Fixpoint Evaluation without Repeated Inferences

Computing the fixpoint by repeatedly applying all rules is called Naive fixpoint

evaluation. Naive evaluation is guaranteed to compute the least fixpoint, but every

application of a rule repeats all inferences made by earlier applications of this rule. We

illustrate this point using the following rule:

Components(Part, Subpart) :- Assembly(Part, Part2, Qty),

Components(Part2, Subpart).

When this rule is applied for the first time, after applying the first rule defining Com-

ponents, the Components table contains the projection of Assembly on the first two

fields. Using these Components tuples in the body of the rule, we generate the tuples

shown in Figure 27.3. For example, the tuple 〈wheel, rim〉 is generated through the

following inference:

Components(wheel, rim) :- Assembly(wheel, tire, 1),

Components(tire, rim).

When this rule is applied a second time, the Components table contains the tuples

shown in Figure 27.3, in addition to the tuples that it contained before the first ap-

plication. Using the Components tuples shown in Figure 27.3 leads to new inferences,

for example:

Components(trike, rim) :- Assembly(trike, wheel, 3),

Components(wheel, rim).

However, every inference carried out in the first application of this rule is also repeated

in the second application of the rule, since all the Assembly and Components tuples

used in the first rule application are considered again. For example, the inference of

〈wheel, rim〉 shown above is repeated in the second application of this rule.

The solution to this repetition of inferences consists of remembering which inferences

were carried out in earlier rule applications and not carrying them out again. It turns

out that we can ‘remember’ previously executed inferences efficiently by simply keep-

ing track of which Components tuples were generated for the first time in the most

Deductive Databases 815

recent application of the recursive rule. Suppose that we keep track by introducing

a new relation called delta Components and storing just the newly generated Compo-

nents tuples in it. Now, we can use only the tuples in delta Components in the next

application of the recursive rule; any inference using other Components tuples should

have been carried out in earlier rule applications.

This refinement of fixpoint evaluation is called Seminaive fixpoint evaluation. Let

us trace Seminaive fixpoint evaluation on our example program. The first application of

the recursive rule produces the Components tuples shown in Figure 27.3, just like Naive

fixpoint evaluation, and these tuples are placed in delta Components. In the second

application, however, only delta Components tuples are considered, which means that

only the following inferences are carried out in the second application of the recursive

rule:

Components(trike, rim) :- Assembly(trike, wheel, 3),

delta Components(wheel, rim).

Components(trike, tube) :- Assembly(trike, wheel, 3),

delta Components(wheel, tube).

Next, the bookkeeping relation delta Components is updated to contain just these

two Components tuples. In the third application of the recursive rule, only these

two delta Components tuples are considered, and thus no additional inferences can be

made. The fixpoint of Components has been reached.

To implement Seminaive fixpoint evaluation for general Datalog programs, we apply

all the recursive rules in a program together in an iteration. Iterative application of

all recursive rules is repeated until no new tuples are generated in some iteration. To

summarize how Seminaive fixpoint evaluation is carried out, there are two important

differences with respect to Naive fixpoint evaluation:

We maintain a delta version of every recursive predicate to keep track of the

tuples generated for this predicate in the most recent iteration; for example,

delta Components for Components. The delta versions are updated at the end

of each iteration.

The original program rules are rewritten to ensure that every inference uses at

least one delta tuple, that is, one tuple that was not known before the previous

iteration. This property guarantees that the inference could not have been carried

out in earlier iterations.

We will not discuss the details of Seminaive fixpoint evaluation, such as the algorithm

for rewriting program rules to ensure the use of a delta tuple in each inference.

816 Chapter 27

27.4.2 Pushing Selections to Avoid Irrelevant Inferences

Consider a nonrecursive view definition. If we want only those tuples in the view that

satisfy an additional selection condition, the selection can be added to the plan as

a final selection operation, and the relational algebra transformations for commuting

selections with other relational operators allow us to ‘push’ the selection ahead of more

expensive operations such as cross-products and joins. In effect, we are able to restrict

the computation by utilizing selections in the query specification. The problem is more

complicated for recursively defined queries.

We will use the following program as an example in this section:

SameLevel(S1, S2) :- Assembly(P1, S1, Q1), Assembly(P1, S2, Q2).

SameLevel(S1, S2) :- Assembly(P1, S1, Q1),

SameLevel(P1, P2), Assembly(P2, S2, Q2).

Consider the tree representation of Assembly tuples illustrated in Figure 27.2. There

is a tuple 〈S1, S2〉 in SameLevel if there is a path from S1 to S2 that goes up a certain

number of edges in the tree and then comes down the same number of edges.

Suppose that we want to find all SameLevel tuples with the first field equal to spoke.

Since SameLevel tuples can be used to compute other SameLevel tuples, we can-

not just compute those tuples with spoke in the first field. For example, the tuple

〈wheel, frame〉 in SameLevel allows us to infer a SameLevel tuple with spoke in the

first field:

SameLevel(spoke, seat) :- Assembly(wheel, spoke, 2),

SameLevel(wheel, frame),

Assembly(frame, seat, 1).

Intuitively, we have to compute all SameLevel tuples whose first field contains a value

that is on the path from spoke to the root in Figure 27.2. Each such tuple has the

potential to contribute to answers for the given query. On the other hand, computing

the entire SameLevel table is wasteful; for example, the SameLevel tuple 〈tire, seat〉

cannot be used to infer any answer to the given query (or indeed, to infer any tuple

that can in turn be used to infer an answer tuple). We can define a new table, which

we will call Magic SameLevel, such that each tuple in this table identifies a value m for

which we have to compute all SameLevel tuples with m in the first column, in order

to answer the given query:

Magic SameLevel(P1) :- Magic SameLevel(S1), Assembly(P1, S1, Q1).

Magic SameLevel(spoke) :- .

Consider the tuples in Magic SameLevel. Obviously we have 〈spoke〉. Using this

Magic SameLevel tuple and the Assembly tuple 〈wheel, spoke, 2〉, we can infer that

Deductive Databases 817

the tuple 〈wheel〉 is in Magic SameLevel. Using this tuple and the Assembly tuple

〈trike, wheel, 3〉, we can infer that the tuple 〈trike〉 is in Magic SameLevel. Thus,

Magic SameLevel contains each node that is on the path from spoke to the root in

Figure 27.2. The Magic SameLevel table can be used as a filter to restrict the compu-

tation:

SameLevel(S1, S2) :- Magic SameLevel(S1),

Assembly(P1, S1, Q1), Assembly(P2, S2, Q2).

SameLevel(S1, S2) :- Magic SameLevel(S1), Assembly(P1, S1, Q1),

SameLevel(P1, P2), Assembly(P2, S2, Q2).

These rules together with the rules defining Magic SameLevel give us a program for

computing all SameLevel tuples with spoke in the first column. Notice that the

new program depends on the query constant spoke only in the second rule defining

Magic SameLevel. Thus, the program for computing all SameLevel tuples with seat

in the first column, for instance, is identical except that the second Magic SameLevel

rule is:

Magic SameLevel(seat) :- .

The number of inferences made using the ‘Magic’ program can be far fewer than the

number of inferences made using the original program, depending on just how much

the selection in the query restricts the computation.

The Magic Sets Algorithm

We illustrated the Magic Sets algorithm on the SameLevel program, which contains

just one output relation and one recursive rule. The algorithm, however, can be applied

to any Datalog program. The input to the algorithm consists of the program and a

query form, which is a relation that we want to query plus the fields of the query

relation for which a query will provide constants. The output of the algorithm is a

rewritten program. When the rewritten program is evaluated, the constants in the

query are used to restrict the computation.

The Magic Sets program rewriting algorithm can be summarized as follows:

1. Add ‘Magic’ filters: Modify each rule in the program by adding a ‘Magic’

condition to the body that acts as a filter on the set of tuples generated by this

rule.

2. Define the ‘Magic’ relations: We must create new rules to define the ‘Magic’

relations. Intuitively, from each occurrence of an output relation R in the body of

a program rule, we obtain a rule defining the relation Magic R.

818 Chapter 27

When a query is posed, we add the corresponding ‘Magic’ tuple to the rewritten

program and evaluate the least fixpoint of the program.

We remark that the Magic Sets algorithm has turned out to be quite effective for

computing correlated nested SQL queries, even if there is no recursion, and is used for

this purpose in many commercial DBMSs even though these systems do not currently

support recursive queries.

27.5 POINTS TO REVIEW

It is not possible to write recursive rules in SQL-92, but SQL:1999 supports recur-

sion. A Datalog program consists of a collection of rules. A rule consists of a head

and a body. DBMSs that support Datalog are called deductive database systems

since the rules are applied iteratively to deduce new tuples. (Section 27.1)

Relations in Datalog are either defined by rules (output relations) or have tuples

explicitly listed (input relations). The meaning of a Datalog program can be

defined either through least model semantics or through least fixpoint semantics.

Least model semantics is declarative. A model of a program is a collection of

relations that is consistent with the input relations and the Datalog program. A

model that is contained in every other model is called a least model. There is

always a least model for a Datalog program without negation, and this model is

defined to be the meaning of the program. Least fixpoint semantics is operational.

A fixpoint of a function is a value v such that f(v) = v. The least fixpoint is a

fixpoint that is smaller than every other fixpoint. If we consider Datalog programs

without negation, every program has a least fixpoint and the least fixpoint is equal

to the least model. (Section 27.2)

We say that a table T depends on a table S if some rule with T in the head con-

tains S, or (recursively) contains a predicate that depends on S, in the body. If

a Datalog program contains not, it can have more than one least fixpoint. We

can syntactically restrict ourselves to stratified programs, for which there is a least

fixpoint (from among the many fixpoints that exist for the program) that corre-

sponds closely to an intuitive reading of the program. In a stratified program, the

relations can be classified into numbered layers called strata such that a relation

in stratum k only depends on relations in strata less than k. Datalog can be ex-

tended with grouping and aggregation operations. Unrestricted use of aggregation

can also result in programs with more than one least fixpoint, and we can again

restrict ourselves to stratified programs to get natural query results. (Section

27.3)

Straightforward evaluation of recursive queries by repeatedly applying the rules

leads to repeated inferences (the same tuples are inferred repeatedly by the same

rule) and unnecessary inferences (tuples that do not contribute to the desired

Deductive Databases 819

output of the query). We call one application of all rules using all tuples generated

so far an iteration. Simple repeated application of the rules to all tuples in each

iteration is also called Naive fixpoint evaluation. We can avoid repeated inferences

using Seminaive fixpoint evaluation. Seminaive fixpoint evaluation only applies

the rules to tuples that were newly generated in the previous iteration. To avoid

unnecessary inferences, we can add filter relations and modify the Datalog program

according to the Magic Sets program rewriting algorithm. (Section 27.4)

EXERCISES

Exercise 27.1 Consider the Flights relation:

Flights(flno: integer, from: string, to: string, distance: integer,

departs: time, arrives: time)

Write the following queries in Datalog and SQL3 syntax:

1. Find the flno of all flights that depart from Madison.

2. Find the flno of all flights that leave Chicago after Flight 101 arrives in Chicago and no

later than one hour after.

3. Find the flno of all flights that do not depart from Madison.

4. Find all cities reachable from Madison through a series of one or more connecting flights.

5. Find all cities reachable from Madison through a chain of one or more connecting flights,

with no more than one hour spent on any connection. (That is, every connecting flight

must depart within an hour of the arrival of the previous flight in the chain.)

6. Find the shortest time to fly from Madison to Madras, using a chain of one or more

connecting flights.

7. Find the flno of all flights that do not depart from Madison or a city that is reachable

from Madison through a chain of flights.

Exercise 27.2 Consider the definition of Components in Section 27.1.1. Suppose that the

second rule is replaced by

Components(Part, Subpart) :- Components(Part, Part2),

Components(Part2, Subpart).

1. If the modified program is evaluated on the Assembly relation in Figure 27.1, how many

iterations does Naive fixpoint evaluation take, and what Components facts are generated

in each iteration?

2. Extend the given instance of Assembly so that Naive fixpoint iteration takes two more

iterations.

3. Write this program in SQL3 syntax, using the WITH clause.

820 Chapter 27

4. Write a program in Datalog syntax to find the part with the most distinct subparts; if

several parts have the same maximum number of subparts, your query should return all

of these parts.

5. How would your answer to the previous part be changed if you also wanted to list the

number of subparts for the part with the most distinct subparts?

6. Rewrite your answers to the previous two parts in SQL3 syntax.

7. Suppose that you want to find the part with the most subparts, taking into account

the quantity of each subpart used in a part, how would you modify the Components

program? (Hint: To write such a query you reason about the number of inferences of

a fact. For this, you have to rely on SQL’s maintaining as many copies of each fact as

the number of inferences of that fact and take into account the properties of Seminaive

evaluation.)

Exercise 27.3 Consider the definition of Components in Exercise 27.2. Suppose that the

recursive rule is rewritten as follows for Seminaive fixpoint evaluation:

Components(Part, Subpart) :- delta Components(Part, Part2, Qty),

delta Components(Part2, Subpart).

1. At the end of an iteration, what steps must be taken to update delta Components to

contain just the new tuples generated in this iteration? Can you suggest an index on

Components that might help to make this faster?

2. Even if the delta relation is correctly updated, fixpoint evaluation using the preceding

rule will not always produce all answers. Show an instance of Assembly that illustrates

the problem.

3. Can you suggest a way to rewrite the recursive rule in terms of delta Components so

that Seminaive fixpoint evaluation always produces all answers and no inferences are

repeated across iterations?

4. Show how your version of the rewritten program performs on the example instance of

Assembly that you used to illustrate the problem with the given rewriting of the recursive

rule.

Exercise 27.4 Consider the definition of SameLevel in Section 27.4.2 and the Assembly

instance shown in Figure 27.1.

1. Rewrite the recursive rule for Seminaive fixpoint evaluation, and show how Seminaive

evaluation proceeds.

2. Consider the rules defining the relation Magic, with spoke as the query constant. For

Seminaive evaluation of the ‘Magic’ version of the SameLevel program, all tuples in Magic

are computed first. Show how Seminaive evaluation of the Magic relation proceeds.

3. After the Magic relation is computed, it can be treated as a fixed database relation, just

like Assembly, in the Seminaive fixpoint evaluation of the rules defining SameLevel in

the ‘Magic’ version of the program. Rewrite the recursive rule for Seminaive evaluation

and show how Seminaive evaluation of these rules proceeds.

Deductive Databases 821

BIBLIOGRAPHIC NOTES

The use of logic as a query language is discussed in several papers in [254, 466], which arose

out of influential workshops. Good textbook discussions of deductive databases can be found

in [656, 3, 122, 695, 438]. [535] is a recent survey article that provides an overview and covers

the major prototypes in the area, including LDL [147], Glue-Nail! [478] and [180], EKS-V1

[666], Aditi [536], Coral [534], LOLA [705], and XSB [561].

The fixpoint semantics of logic programs (and deductive databases as a special case) is pre-

sented in [659], which also shows equivalence of the fixpoint semantics to a least-model se-

mantics. The use of stratification to give a natural semantics to programs with negation was

developed independently in [30, 131, 488, 660].

Efficient evaluation of deductive database queries has been widely studied, and [48] is a survey

and comparison of several early techniques; [533] is a more recent survey. Seminaive fixpoint

evaluation was independently proposed several times; a good treatment appears in [44]. The

Magic Sets technique was proposed in [47] and was generalized to cover all deductive database

queries without negation in [64]. The Alexander method [549] was independently developed

and is equivalent to a variant of Magic Sets called Supplementary Magic Sets in [64]. [482]

showed how Magic Sets offers significant performance benefits even for nonrecursive SQL

queries. [586] describes a version of Magic Sets designed for SQL queries with correlation,

and its implementation in the Starburst system (which led to its implementation in IBM’s

DB2 DBMS). [583] discusses how Magic Sets can be incorporated into a System R style

cost-based optimization framework. The Magic Sets technique is extended to programs with

stratified negation in [63, 43]. [102] compares Magic Sets with top-down evaluation strategies

derived from Prolog.

[559] develops a program rewriting technique related to Magic Sets called Magic Counting.

Other related methods that are not based on program rewriting but rather on run-time control

strategies for evaluation include [191, 367, 664, 665]. The ideas in [191] have been developed

further to design an abstract machine for logic program evaluation using tabling in [638] and

[531]; this is the basis for the XSB system [561].

